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Abstract

Dissipation mechanisms of Godunov-type schemes are presented in the framework of unified representation. The

causes of inaccuracy at the contact discontinuity and the dissipation mechanism in the numerical mass flux of the

HLLEM scheme are examined first. A ‘‘vacuum preserving property’’ is defined and the prominent role of the nu-

merical signal speed involved with the rarefaction waves in the expanding region is analyzed. Through a linear per-

turbation analysis on the odd–even decoupling problem, necessary conditions for designing a shock stable scheme are

discussed. As a result, an improved HLLE(HLLE+) scheme is proposed and its dissipation mechanism is analyzed. The

diffusivity of the Godunov-type schemes is examined by two-dimensional hypersonic viscous flow.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

A number of numerical flux functions for inviscid fluxes have been devised as approximate solutions to

the Riemann problem. Approximate Riemann solvers such as Roe�s [1] and Osher–Solomon�s schemes [2]

are widely used for compressible flows because of their mathematical clarity and high quality resolution.

However, the schemes often encounter catastrophic solutions, for example, nonphysical expansion shocks

and nonpositive solutions or shock instability, namely the carbuncle. Even the Godunov�s exact Riemann

solver [3] has deficiencies in certain conditions.

Harten et al. [4] suggested a mathematical theory of the upstream difference scheme and the Godunov-

type scheme, denoted by the Harten–Lax–van Leer (HLL) which approximates the solution of Riemann
problem with two signal waves. A typical example of the HLL solver is the HLLE scheme [5] which

proposed the bounds of signal waves by using the eigenvalues of Roe matrix to satisfy the entropy and the

positivity conditions. Despite its desirable properties, it is difficult to simulate practical problems because of

its highly dissipative behavior. The HLLE-Modified (HLLEM) scheme [6] enhances the resolution com-
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parable to that of the Roe scheme. However, several problems have been reported for this scheme [7,8]. The

two main problems of the Godunov-type schemes are multidimensional shock instability and the nonex-

istence of strong receding flows [9]. It has also been found that the HLLEM which recovers the information

of contact discontinuity [10] is less accurate than the Roe.

Our main attention is to understand the causes of the breakdowns and the inaccuracies of the HLLEM

scheme. It is useful to unify the Godunov-type schemes by using control parameters in order to identify

their numerical dissipation mechanism. The unified approach enables us to obtain important information

about the accuracy and the robustness. Linear discrete analysis [9,11] is performed to study the dissipation
mechanism.

In this paper, it is shown that the mechanism of the HLLEM scheme accompanies somewhat erroneous

dissipation and the Liou�s lemma [9] for the contact discontinuity can be successfully applied to check the

accuracy of a numerical flux function. We also claim that the dissipative solutions of the HLLE and

the HLLEM schemes for strong receding flows result from the numerical momentum fluxes rather than the

mass flux. According to our analysis for odd–even decoupling, the derived condition shows that the Liou�s
lemma, which is defined by ‘‘A scheme having the property DðpÞ ¼ 0 in the mass flux is a shock-stable

scheme,’’ is only a sufficient condition for a shock-stable scheme. This is important in designing new and
improved schemes [12]. To verify the analysis, the shock tube problems and the boundary layer problems

are considered.

This paper is organized as follows: In Section 2, we describe the formulations of the Godunov-type

schemes and represent those schemes in a unified form. The numerical meaning of the entropy correc-

tions to the Roe scheme is given. Section 3 is then devoted to the analysis of the numerical dissipation

mechanism of the Godunov-type schemes. The instabilities of the schemes are analyzed in detail. In

Section 4, an improved HLLE(HLLE+) scheme is proposed from the analysis. The wall heat fluxes for

the hypersonic viscous flows are computed to demonstrate the effect of the numerical dissipation since
the computed heat fluxes are very sensitive to the dissipation mechanism. Conclusions are drawn in

Section 5.

2. Unified Godunov-type schemes

We consider the conservative form of the two-dimensional (2-D) compressible Navier–Stokes equa-

tions,
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where the conservative flow variable w ¼ ½q; qu; qv; qe�T. f and g are the inviscid fluxes in x and y directions
respectively, and fv and gv are the viscous fluxes:
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Here q and p are the density and pressure, u and v are the Cartesian velocity components. e is the total

energy and H ¼ eþ p=q is the total enthalpy. The quantity rij and qi are the viscous stresses and heat fluxes

in x and y directions.

Numerical flux functions have been constructed for one-dimensional (1-D) Euler equations since the

viscous fluxes can be discretized by the central differencing. Eq. (1) can be integrated cell-wise in 1-D space

domain, then the discretized governing equation yields in conservation form

wnþ1
i ¼ wn

i �
Dt
Dx

ðfniþ1=2 � fni�1=2Þ: ð4Þ

The HLL Riemann solver [4] approximates the solution of Riemann problem with two waves propa-

gating at speeds of br and bl, as shown in Fig. 1. They are the lower and upper bounds for the physical

signal speeds with which the information of the initial discontinuity is transported. To satisfy the entropy

and the positivity conditions, Einfeldt [5] suggested adequate bounds by making use of the Roe-averaged

eigenvalues, k̂kp ¼ ûu; ûuþ âa; ûu� âa; ûuf g, where âa is the speed of sound at the cell interface and the subscript

p ¼ 1; 2; 3; 4. The superscript^denotes the Roe-averaged values throughout this paper. Then the approxi-
mate signal speeds at the right and the left cell faces are defined to be:

br ¼ maxfk̂k2; ur þ arg; bl ¼ minfk̂k3; ul � alg: ð5Þ

Using this signal speeds, the HLLE scheme can be written by

fHLLEðwl;wrÞ ¼
bþfðwlÞ � b�fðwrÞ

bþ � b�
þ bþb�

bþ � b�
ðwrf � wlÞg ð6Þ

with bþ ¼ maxfbr; 0:0g; b� ¼ minfbl; 0:0g. The HLLE scheme does not violate the positivity and the en-
tropy conditions nor suffer instability at strong shocks. However, the contact discontinuities are smeared

out excessively since it is very dissipative regardless of the chosen bounds.

The HLLEM scheme [6] improves the resolution of contact discontinuity by reusing the information of

contact discontinuity in terms of modifying the intermediate state. The numerical flux function of the

HLLEM scheme can then be written by

fHLLEMðwl;wrÞ ¼ fHLLEðwl;wrÞ �
bþb�

bþ � b�
X
p¼1;4

�ddapRp; ð7Þ

Fig. 1. The approximate solution of HLL Riemann solver.
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where Rpðp ¼ 1; 2; 3; 4Þ are the right eigenvectors of the flux Jacobian evaluated at the intermediate states.

ap are the coefficients of the projection of wr � wl onto Rp

wr � wl ¼
X4
p¼1

apRp: ð8Þ

Since bþ and b� are positive and negative quantities, respectively, the last term in Eq. (7) is of an anti-
diffusive nature. The anti-diffusion coefficient �dd is defined such that they can take out excess dissipation in

the linear degenerated fields

�dd ¼ âa
j�uuj þ âa

; ð9Þ

where the speed �uu is defined as the approximate speed of the contact discontinuity.

The above described schemes can be unified and characterized by using control parameters. This enables
us to analyze the dissipation mechanisms of each scheme. The numerical flux fðwl;wrÞ of the unified

Godunov-type schemes is defined by

fðwl;wrÞ ¼
bþfðwlÞ � b�fðwrÞ

bþ � b�
þ bþb�

bþ � b�
ðwr

(
� wlÞ �

X
p¼1;4

�ddapRp

)
ð10Þ

with br and bl defined to be

br ¼ maxfk̂k2;C
þg; bl ¼ minfk̂k3;C

�g: ð11Þ

According to the definition of Cþ, C� and �uu, different dissipation mechanisms can be described as fol-

lows:

HLLE

Cþ ¼ ur þ ar; C� ¼ ul � al; j�uuj ¼ 1 so that �dd ¼ 0:0: ð12Þ

HLLEM

Cþ ¼ ur þ ar; C� ¼ ul � al; j�uuj ¼ br þ bl

2










: ð13Þ

Roe

Cþ ¼ k̂k2; C� ¼ k̂k3; j�uuj ¼ jûuj: ð14Þ

The Roe scheme can lead to a nonphysical solution with entropy-violating discontinuities, since no

rarefaction waves are considered. Hence additional dissipation is required with nonlinear acoustic waves.
On the other hand, no dissipation to linear contact waves results in instabilities in the transverse direction

to a strong normal shock. It is possible to suppress them by using the entropy correction to linear waves. In

this paper, Harten�s and Lin�s [13,14] entropy correction functions are applied in order to add some dis-

sipation. To describe the entropy correction, the numerical flux function of the original Roe scheme is

written as

fROEðwl;wrÞ ¼
1

2
ffðwlÞ þ fðwrÞg þ

1

2

X4
p¼1

Wðk̂kpÞapRp: ð15Þ
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Harten�s function is expressed as

Wðk̂kpÞ ¼
jk̂kpj if jk̂kpj > �;

1
2

k̂k2pþ�2

�

� �
otherwise;

8><
>:

� ¼ �� jûunj
�

þ âa
�
;

ð16Þ

where �� is a constant between 0 and 0.25, and ûun is the contravariant velocity normal to the cell interface.

Harten�s dissipation is inadequate for viscous computations as �� increases, since the dissipation added to

the linear waves gives an unreasonably thick boundary layer.
Lin used the pressure gradient to design the 2-D isotropic correction function which suppresses the shock

instability and reduces the dissipation added. Lin�s function is expressed as

Wðk̂kpÞ ¼
jk̂kpj if jk̂kpj > �p;

1
2

k̂k2pþ�2p
�p

þ jk̂kpj
� �

otherwise;

8><
>:

�1;4 ¼ jûunj
�

þ âa
�

k3kp
� �

;

�2;3 ¼ jûunj
�

þ âa
�

k1
�

þ k2kp
�
;

ð17Þ

kp adjusts the magnitude of the dissipation as a shock indicator in 2-D problems which is defined by

ðkpÞij ¼ 0:5
Piþ1;j � 2Pi;j þ Pi�1;j

Piþ1;j þ 2Pi;j þ Pi�1;j












�
þ Pi;jþ1 � 2Pi;j þ Pi;j�1

Pi;jþ1 þ 2Pi;j þ Pi;j�1











�
: ð18Þ

Lin proposed the values of k1 ¼ 0:25, k2 ¼ 5 and k3 ¼ 15. See [14] for details. Lin�s method works well in

many situations for hypersonic viscous flows. However, it needs a special treatment to reduce the amount of

dissipation in the supersonic regions of flows. It also has some problems involved with convergence. Al-

though the convergence problem can be suppressed by the smoothing parameter k2, it degrades the normal

and oblique shock resolutions since the dissipation to the nonlinear waves is added.

3. Analysis on numerical dissipation mechanism

Linear discrete analysis is a powerful tool to study the behavior of any scheme at a specified condition. In

this section, it will be shown that the dissipation mechanism of the HLLEM scheme accompanies erroneous

diffusion at contact discontinuities. The dissipative behavior at the receding flow and the odd–even de-

coupling problem along with the discrete analysis will be considered also.

3.1. Numerical dissipation at contact discontinuity

Since a contact discontinuity is numerically equivalent to a limiting case of a viscous boundary layer, the
accuracy of a numerical method for Navier–Stokes equations can be verified by the contact discontinuity

problem. Fig. 2 displays the numerical results for the stationary contact discontinuity problem. The Roe

scheme gives the exact solution for the stationary contact discontinuity. The HLLEM solution is somewhat

diffused though the erroneous diffusion is smaller than that of the HLLE scheme. To verify this result,

the laminar boundary layer on a flat plate at Mach number of 0.3 is computed with the second-order

accurate Roe and HLLEM schemes using MUSCL higher order interpolation [15]. Similarly, Fig. 3 shows

somewhat different resolution between the Roe and the HLLEM for this problem. Einfeldt [5] defined the
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approximate speed of contact discontinuity in Eq. (13) as the average of the largest and the smallest signal

speeds. This approximation may lead to more dissipative solutions in the local Riemann problem.

Liou�s lemma [9] has been thought to be a useful criterion for checking the accuracy of a numerical flux

function involved with the contact discontinuity. The lemma requires the numerical mass flux function in

Eq. (10) to be derived. The mass flux of the Godunov-type schemes, _mm, can be expressed as

_mm ¼ 1

2
½ðquÞl þ ðquÞr� �

1

2
Dðwl;wrÞ: ð19Þ

Here, Dðwl;wrÞ is the numerical dissipation term which can be expanded in terms of differences of variables
ðq; u; pÞ

Dðwl;wrÞ ¼ DðqÞDq þ DðuÞDuþ DðpÞDp; ð20Þ

where DðqÞ, DðuÞ, and DðpÞ are the dissipation coefficients of Dðwl;wrÞ. These coefficients are varied according
to numerical schemes. Refer to [9] for further details in order to derive the coefficients.

Fig. 2. Stationary contact discontinuity: ðq; u; pÞl ¼ (1,0,1), ðq; u; pÞr ¼ (10,0,1) at x ¼ 0:5.
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Lemma 3.1 (Liou�s lemma). The exact solution of the Riemann problem for a 1-D contact discontinuity
moving with speed uc requires that

DðqÞ ¼ ucj j; ð21Þ

when ðu; pÞl ¼ ðu; pÞr ¼ ðuc; pÞ and ql 6¼ qr.

As shown in this lemma, to resolve the stationary contact discontinuity exactly, the mass flux has to be

removed when the Mach number goes to zero. By using Liou�s lemma, it can be shown that the diffused

HLLEM results are caused by the approximate speed of contact discontinuity. For clarity, we discuss the

following corollary:

Corollary 3.1. In order for DðqÞ of Godunov-type schemes to become jucj, g must be 1 when it is defined by

g ¼ jucj þ ac
j�uuj þ ac

: ð22Þ

Proof. Assuming ql 6 qr, the speeds of sound are related as ar 6 ac 6 al. It is easy to show that the Roe

scheme exactly resolves the contact discontinuity. Roe scheme:

bþ ¼ k2 ¼ uc þ ac and b� ¼ k3 ¼ uc � ac; ð23aÞ

DðqÞ ¼ jucj and g ¼ 1: ð23bÞ

All Godunov-type schemes except the Roe have the same signal speeds

bþ ¼ k2 ¼ uc þ ac; b� ¼ C� ¼ ul � al: ð24Þ

Then, we can show

DðqÞ ¼ 1

ac þ al
jucjfð2g½ � 1Þac þ alg þ 2ð1� gÞacalj: ð25Þ

Fig. 3. Comparison of the second-order Roe and HLLEM for M1 ¼ 0:3 laminar boundary layer.
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As a result, DðqÞ ¼ jucj only if g is 1. �

The HLLE scheme in which g is zero shows the lowest accuracy since the mass flux remains when the

Mach number goes to zero. It is natural that the HLLE contaminates solutions since it essentially has no
consideration to contact discontinuity. The HLLEM scheme in which g is not one is not exact for the

stationary contact discontinuity because of the use of Eq. (13). In the HLLEM scheme, the approximate

speed of contact discontinuity produces unwanted diffusion to the linear degenerated fields. The Roe-av-

eraged jûuj must be used as the approximate speed of contact discontinuity when the anti-diffusive term is

composed of the Roe eigenvectors, i.e.,

j�uujHLLEM ¼ jûuj: ð26Þ

If we define the speed of the HLLEM scheme with Eq. (26), the resulting scheme can capture the sta-
tionary contact discontinuity exactly. It will be displayed in Fig. 9.

3.2. Signal speeds in expanding region

Generally, the nonlinear waves govern the behavior of the rarefaction waves as well as the shock. For the

Roe scheme, rarefaction waves are regarded as discontinuity at the sonic point in the expanding region

since it does not consider the entropy condition. The condition is automatically satisfied for the HLL

solvers which have different numerical signal speeds from the Roe scheme. Fig. 4 shows that the solutions of

a Riemann problem where the states wl and wr are connected by a rarefaction wave in the expanding region.

The simple entropy correction for the Roe scheme, as shown, only reduces the strength of expansion shock.

The HLL solvers give the same results and break up the initial discontinuity since they have the same

numerical signal speeds.
The interesting problem concerned with rarefaction waves is the ‘‘receding flow problem.’’ The solution

consists of two rarefaction waves moving away from each other. Einfeldt et al. [6] considered the particular

receding flow in which Roe�s scheme broke down after a few time steps. They expressed the breakdown by

Fig. 4. Nonphysical expansion shock at the region expanding with initial condition ðq; u; pÞl ¼ ð1:205; 0; 10Þ fixed.
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saying that certain Riemann problems are not linearizable. The reason for the failure of the Roe lineari-

zation is indeed the occurrence of two rarefaction waves in the exact solution to the Riemann problem [16].
For the case of a receding speed of Mach number of 25, the positively conservative HLLE scheme

displays greatly smeared solutions near x ¼ 0:5 where the speed vanishes, as shown in Fig. 5. In this

nonlinearizable problem, the density and the pressure have to reach machine-zero values while the total

energy maintains the initial condition. Despite that the HLLEM scheme is not positively conservative, it

displays similar results and retains the positivity for this problem [8].

In view of physics, the vacuum state at the center interface means no flux, i.e., no fluid convection and

wave interaction. This implies that the density and the pressure can reach machine-zero values only if the

numerical convective flux vanishes at a vacuum state. Therefore, a numerical scheme has to be designed so
that numerical solutions progress toward a physical vacuum state. We define this numerical property as the

‘‘vacuum preserving property.’’

Definition 3.1. A numerical scheme which preserves the initial vacuum condition has a vacuum preserving

property.

It is found that the fluxes in the form of flux vector splitting such as the AUSM [8] and Van Leer [17]
have vacuum preserving property according to the definition. However, the HLLE and HLLEM as well as

Fig. 5. The HLLE and HLLEM solutions for receding flow: Mr ¼ 25, Ml ¼ �25.
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the Roe [1] and Osher and Solomon [2] do not have this property. To investigate the vacuum preserving

property, the initial vacuum condition is given at center interface, i.e., x ¼ 0:5. The following result can then

be derived:

Lemma 3.2. A numerical flux function which can preserve an initial vacuum condition consists only of the

pressure flux which is denoted by fp ¼ 0; pr¼l; 0½ �T in one dimension. Accordingly, the Godunov-type

schemes do not preserve a vacuum state.

Proof. We begin by introducing two point states of the receding flow, where wr ¼ ðq; qu; qeÞ,
wl ¼ ðq;�qu; qeÞ and let ur ¼ u > 0, large enough to make a flow state vacuum. The Roe-averaged velocity

at the interface is zero and the signal speeds bþ and b� of the HLL solvers are as follows:

bþ ¼ ur þ ar ¼ uþ a; b� ¼ ul � al ¼ �u� a: ð27Þ

Since the anti-diffusion term vanishes, all fluxes become HLLE flux. The pressure flux is extracted out of

the original flux form such as by AUSM flux treatment [9] and then

fðwl;wrÞ ¼
bþulwl � b�urðwrÞ

bþ � b�
þ bþb�

bþ � b�
wrð � wlÞ þ

bþfp � b�fp

bþ � b�
¼ a

2
wr½ � wl� þ fp: ð28Þ

For the Roe scheme, the numerical flux in the vacuum condition can be shown as

fðwl;wrÞ ¼
u� a
2

wr½ � wl� þ fp: ð29Þ

As can be seen, the momentum flux inevitably has remaining terms in the case of the receding flow,

although the mass flux vanishes. �

The procedure of the proof shows that spurious and excessive dissipation to the momentum fluxes results

from the forward and backward nonlinear waves. The excessive dissipation can be removed by forcing the

numerical signal speeds of the waves to vanish. We define HLLEx scheme as an HLLE scheme with the

following numerical signal speeds:

Cþ ¼ ur þ x � ar; C� ¼ ul � x � al; ð30Þ

x ¼ 1:0 if MlMr 6 � 1:0;
0:0 otherwise:

�

The HLLEx eliminates the transmission of the speed of sound by letting x zero. In Fig. 6, the HLLEx
solution displays the machine-zero density and discontinuity of the velocity in the vacuum state. Note that

x activates only for the supersonic receding flows.

Since the characteristics of the rarefaction waves are involved with the nonlinear signal speeds, the

present Lemma 3.1 has consistency with Einfeldt�s expression [6] for the nonexistence of the receding flows.

The Godunov-type schemes are devised with the assumption that the forward and backward nonlinear

waves, br and bl, always exist in the approximate solutions of Riemann problems. So the schemes intrin-
sically impose a fundamental problem. As a result, the nonlinear waves must carefully be modified to

preserve the vacuum states in the framework of the Godunov-type schemes.

Although the signal speeds of the HLLE help the scheme preserving positivity, they give dissipative

momentum fluxes and do not preserve the vacuum states. On the other hand, the remaining terms of the

Roe seem to be too large to keep the bound of positivity and may lead to the negative internal energy. It is

somewhat ambiguous what relation exists between the positivity and the vacuum preserving property of

any scheme. More study to assess this relation is definitely needed.
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3.3. Shock instability

It is well known that approximate Riemann solvers such as the Roe and the HLLEM occasionally fail to

stabilize strong normal shocks, namely the carbuncle. The catastrophic phenomena occur only in multi-

dimensional cases. Several researchers have considered the dynamics of the instability process as the ‘‘odd–

even decoupling’’ process [11,18]. To investigate the problem, a normal shock moving in a long channel grid

with a small saw-tooth perturbation is computed. In Fig. 7, the solutions of the Roe and the HLLEM

schemes totally break the normal shock indicating an odd–even decoupling behavior. The HLLE, on the

other hand, accurately preserves the initial normal shock even after a long time. Because the HLLEM

scheme has a similar mechanism as with the Roe scheme on linear degenerated fields, it exhibits behavior
like that of the Roe scheme [7]. Considering that the HLLE does not suffer from the breakdown, one may

say that the anti-diffusion term of Eq. (7) is the numerical cause of the breakdown.

Quirk [11] performed a linear stability analysis for the Roe and the HLLE schemes and insisted that the

catastrophic solution of the Roe scheme was caused by the coupling of pressure and density perturbations.

On one hand, Liou discussed the dynamics of the instability process in terms of DðpÞ (shown in Eq. (20)) in

the numerical mass flux. Furthermore, he discussed that a scheme having the property DðpÞ ¼ 0 in the mass

flux is a ‘‘shock-stable’’ scheme. This discussion is equivalent to the analysis of Quirk�s in that they all

agree that the density perturbation coupled with pressure amplifies the instability in the transverse direction
to the shock waves. We start from the assumption that Quirk�s analysis is valid for tracing the mechanism

of the instability. The detailed analysis through a unified representation of the Godunov-type schemes gives

the following lemma.

Fig. 6. The HLLEx solution for receding flow: Mr ¼ 25, Ml ¼ �25.
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Lemma 3.3.Define a shock-stable scheme such that it does not amplify the disturbances at the shock. In the

framework of the Godunov-type schemes, �dd 6¼ 1 if it is shock stable.

We assume that the 2-D computational mesh is uniform with small perturbations at the centerline, and

that the discrete solution at time tn is given by

qn
j ¼ q � ~qqn; pnj ¼ p � ~ppn; unj ¼ u; vnj ¼ 0;

as j is odd or even. Here ~qqn and ~ppn are the amplitudes of the perturbations for the density and pressure

fields, respectively. If we consider the discretized equations, Eq. (4), the amplitude at n+1 time level may be

manipulated to give

~qqnþ1 ¼ ð1� 2vyÞ~qqn þ 2vy �dd ~qqn

 
� ~ppn

âa2

!
;

~ppnþ1 ¼ ð1� 2vyÞ~ppn:
ð31Þ

Making a loose approximation that âa maintains constant, Eq. (31) becomes at the time level tn with
initial one-off perturbation ð~qq0; ~pp0Þ:

Fig. 7. Odd–even decoupling: Ms ¼ 6:0.
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~qqn ¼ ½1� 2ð1� �ddÞvy �n ~qq0

 
� ~pp0

âa2

!
;

~ppn ¼ ð1� 2vyÞn~pp0:
ð32Þ

From this it can be seen that the initial perturbation to the pressure field is damped out if the Courant–

Friedrichs–Levy (CFL) condition(vy < 1) is given. The density perturbation is damped out if

�dd 6¼ 1: � ð33Þ

Eq. (32) shows that the value �dd is a dominant factor to determine whether the density perturbation

damps out or not. Since the above analysis is based on a loose approximation, the condition �dd 6¼ 1 may be

the only necessary condition that odd–even decoupling does not exist in any cases. This analysis opens a

possibility to suppress the instability even though a scheme has DðpÞ 6¼ 0. To assess the lemma, an HLLE

switched(HLLES) scheme is suggested with a switching mechanism:

j�uuj ¼ b
br þ bl

2










þ ð1:0� bÞâa; ð34Þ

b ¼ 1:0 if ðkpÞij 6 0:01;
0:0 otherwise;

�
ð35Þ

where kp is the shock indicator which is defined in Eq. (18). Note that the anti-diffusion coefficient �dd is one

for the Roe and the HLLEM and zero for the HLLE. For the present HLLES scheme, the value of �dd is set

to 0.5 since �uuj j becomes âa when the switching is activated at the shock. As seen in Fig. 7 (bottom right), the

instability does not occur. It is noted that if �dd is set to 0.5 the HLLES scheme does not have the property,

DðpÞ ¼ 0. In other words, the results show that a shock stable scheme does not strictly require DðpÞ ¼ 0

although a scheme with DðpÞ ¼ 0 is always shock stable. If a scheme with �dd ¼ 0:5 does not have a switching
mechanism, it is not suitable for the viscous computation since the boundary layer is contaminated by the

excessive dissipation; see Section 3.1.

4. HLLE+ scheme

It is noted that the numerical dissipation mechanism can be understood mainly through the anti-dif-

fusion terms which are explicitly identified [10]. This is important in constructing a new HLL solver which
captures strong shocks without encountering shock instability nor contaminating the inherent resolution of

the scheme in viscous flows. We propose a new shock stable method which improves the dissipation

mechanism of anti-diffusion terms. For brevity, it is denoted by HLLE+ in this paper.

Present HLLE+ scheme:

Cþ ¼ ur þ ar; C� ¼ ul � al; ð36aÞ

j�uuj ¼ bjûuj þ ð1:0� bÞâa: ð36bÞ

b ¼ 1:0 if ðkpÞij 6 b�;
0:0 otherwise;

�
ð37Þ

where b� is a constant between 0.01 and 0.1. A switching parameter b is introduced to reduce the value of

the anti-diffusion coefficient �dd in the vicinity of some instabilities. It is noted that �dd is set to 0.5 if the
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switching is activated. Quirk [11] proposed a switching method based on the pressure gradient. Quirk used

the HLLE scheme as an alternate method when the base was the Roe scheme. The main difference of the

present scheme compared to Quirk�s method is that the switching is based on the second derivative of

pressure. According to our numerical experiments, the second derivative-based scheme is more robust than
that based on the first order one. Thus it can reduce or even eliminate the dependency on the grid and the

flow conditions. Since it is found that the accuracy of the scheme is not sensitive to b�, the value is fixed to

0.01 in the following numerical results.

Fig. 8 shows the results for the single normal shock discontinuity. All schemes produce the exact solution

except the Roe with the entropy correction which resolves the shock with two intermediate points. The

Harten correction, �� ¼ 0:25, is used here. The corrections for the Roe, essential in preventing shock in-

stability, degrade the accuracy of shock discontinuity. Although the switching function of the HLLE+

Fig. 8. Normal shock discontinuity: ðq; u; pÞl ¼ ð1; 5:916; 1Þ and ðq; u; pÞr ¼ ð5; 1:183; 29Þ at center.

Fig. 9. The HLLE+ solution for the stationary contact discontinuity.
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scheme is activated mostly near shock discontinuity, the resolution of the shock discontinuity is preserved.

In other words, switching scheme like the HLLE+ scheme can remove some instability by changing the

dissipation mechanisms without degrading accuracy. This is the reason that we favor switching the intrinsic

dissipation rather than limiting the amount of the dissipation.

As a consequence of the Corollary 3.1, the approximate speed of the contact discontinuity is proposed as

Eq. (36b) in order to accurately resolve the contact discontinuity. In Fig. 9, displayed is the HLLE+ so-

lution for the stationary contact discontinuity which has the same initial conditions as Fig. 2. As expected,

the HLLE+ scheme gives exact solutions. The dramatic improvement by the HLLE+ scheme is due to the
approximate speed of contact discontinuity. The boundary layer solutions are also regenerated to compare

the numerical dissipation of each scheme. As seen in Fig. 10, the Roe and the HLLE+ schemes agree very

well with the Blasius analytic solution. It is natural that the HLLE displays a much diffused result. The

HLLE+ solutions indicate that it can accurately capture viscous boundary layer as well as stationary

Fig. 10. Effect of numerical dissipation of Roe, HLLE and HLLE+ for laminar boundary layer: M1 ¼ 0.3.

Fig. 11. Moving contact discontinuity: ðq; u; pÞl ¼ ð0:125; 0:1125; 1Þ and ðq; u; pÞl ¼ ð10; 0:1125; 1Þ as initial conditions at center.
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Table 1

Blunt body grid systems

Grid Size CRN (cell Reynolds number)

A 65� 65 2

B 65� 65 57

C 33� 33 114 Double spacing of Grid B

Fig. 12. Mach number contour, Cp distribution and wall heat fluxes for the flow past a blunt body with M1 ¼ 16:34: (left) Carbuncle

phenomenon of the original HLLEM, (right) HLLE+ solution with contaminated HLLEM solution as initial condition.

Fig. 13. Convergence history of HLLE+ solution with the HLLEM solution and freestream as the initial conditions for M1 ¼ 16:34

blunt body flows.
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Fig. 14. Grid and heat fluxes on M1 ¼ 16:34 blunt body: (top) CRN¼ 2, (middle) CRN¼ 57, (bottom) CRN¼ 114.
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contact discontinuity. Similarly, each of the Godunov-type schemes has the same dissipation mechanism

for the moving contact discontinuity. The HLLE scheme has the poorest resolution as shown in Fig. 11.

The difference among other schemes is too small to distinguish.

To investigate the effect of the numerical dissipation on the accuracy for viscous problem, a 2-D hy-

personic viscous flow past a cylinder is presented. The freestream conditions are as follows: M1 ¼ 16:34,
T1 ¼ 52 K, and Re=m ¼ 3:94� 106. The cylinder radius is 0.0381m and Twall ¼ 294:4 K. The conditions

represent a low enthalpy flow which is used for the validation of hypersonic flows under perfect gas ap-

proximation [19]. Three sets of grid systems, as shown in Table 1, are tested to verify the grid dependency of
each scheme. The surface cell Reynolds numbers (CRN) at the stagnation point of each grid are about 2, 57

and 114, respectively. Grid C is made by double spacing of grid B in each direction.

At the surface the no-slip and constant temperature wall boundary conditions are applied. The specified

freestream conditions are enforced for inflow boundary conditions and zero-order extrapolations at out-

flow boundary are applied. To obtain second-order accuracy, the MUSCL interpolation method is used

with the minmod limiter which degrades the accuracy to be first-order at strong discontinuities [15]. The

diagonalized alternating direction implicit (DADI) method [20] is used to obtain the steady solutions.

Coakley�s modified approach [21] for the DADI algorithm is applied to reduce the stiffness of viscous
fluxes. Further descriptions can be found in the literatures.

Fig. 12 displays the Mach number contour, Cp distributions along the stagnation streamline and wall

heat fluxes on the surface of the HLLEM and HLLE+ schemes on the highly stretched grid A when the

CFL number is 1.5. The contaminated HLLEM solution (left) is obtained at 6000 iterations. The spurious

vortical stream is thought of as an example of the carbuncle phenomenon at hypersonic viscous flows. The

‘‘self-correcting’’ solution [9] (right) are obtained with the shock-stable HLLE+ scheme after 6000 itera-

tions. It is interesting that the original HLLEM solution converges to an odd steady state which predicts a

much higher heat fluxes. The convergence history in Fig. 13 also shows that the HLLE+ scheme continued
with the odd HLLEM solution has nearly the same convergence rate with the computation using the

uniform freestream condition as the initial condition.

Fig. 14 shows the used grids and the computed surface heat fluxes with CRN 2, 57 and 114, respectively.

All computations are converged to 10�6 for the L2-norm of density which is enough to converge below 10�4

of the heat fluxes. As shown in right figures of Fig. 14, the HLLE+ scheme shows good agreement with Fay

and Riddell�s theoretically predicted value [22] of 5:6� 105 W=m
2
for all grids. The HLLE scheme also

gives a highly dissipative solution for high CRN. For the Roe scheme with the Harten correction, it makes

the boundary layer dissipative as the CRN of the grid increases. In this case, �� ¼ 0:25 is used for preventing
the carbuncle. The Roe with the Lin correction is not sensitive to grid spacing since its numerical dissipation

does not contaminate the boundary layer. This result shows that the Roe scheme can be sensitive to grid

spacing according to the mechanism of the entropy correction functions. The HLLES scheme gives more

dissipative solutions than the HLLE+ as shown in Fig. 14 (bottom). This difference between HLLES and

HLLE+ results from the difference of the definitions for the approximate speed of the contact discontinuity.

The results also show that the additional numerical dissipation within the boundary layer of hypersonic

viscous flows precludes accurately computing the wall heat fluxes.

5. Concluding remarks

A unified representation with control parameters provides significant information about the accuracy

and robustness of the Godunov-type schemes. To eliminate the erroneous diffusion of HLLEM scheme, we

showed that the Roe-averaged jûuj must be used as the approximate speed of contact discontinuity when the

anti-diffusive term is composed of the Roe eigenvectors. As a consequence of the analysis for the vacuum

preserving property, we also suggested that the diffused solutions of the strong receding flow result from the
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numerical signal speeds of the Godunov-type schemes fundamentally. A shock stable HLLE+ scheme with

nonzero DðpÞ in the mass flux was proposed. The HLLE+ scheme, which successfully eliminates the erro-

neous dissipation and the instability of the HLLEM scheme, accurately predicted the surface heat fluxes

without grid dependency.

References

[1] P.L. Roe, Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys. 43 (1981) 357.

[2] S. Osher, F. Solomon, Upwind difference schemes for hyperbolic systems of conservation laws, Math. Comput. 38 (1982) 339.

[3] S.K. Godunov, A difference scheme for numerical computation of discontinuous solutions of equations of fluid dynamics, Math.

Sbornik. 47 (1959) 271.

[4] A. Harten, P.D. Lax, B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM

Rev. 25 (1983) 35.

[5] B. Einfeldt, On Godunov-type methods for gas dynamics, SIAM J. Numer. Anal. 25 (1988) 294.

[6] B. Einfeldt, C.D. Munz, P.L. Roe, B. Sj€oogreen, On Godunov-type methods near low densities, J. Comput. Phys. 92 (1991) 273.

[7] S. Obayashi, Y. Wada, Practical formulation of a positively conservation scheme, AIAA J. 32 (1993) 1093.

[8] M.-S. Liou, Probing numerical fluxes: mass flux, positivity, and entropy-satisfying property, AIAA paper 97-2035-CP (1997).

[9] M.-S. Liou, Mass flux schemes and connection to shock instability, J. Comput. Phys. 160 (2000) 623.

[10] S.H. Park, J.H. Kwon, Study of Godunov-type schemes using control parameters, in: Proceedings of 4th Asian CFD Conference,

Mianyang, China, 2000, p. 574.

[11] J.J. Quirk, A contribution to the great Riemann solver debate, Internat. J. Numer. Methods Fluids 18 (1994) 555.

[12] S.H. Park, J.H. Kwon, An improved HLLE method for hypersonic viscous flows, AIAA paper 2001-2633 (2001).

[13] A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 49 (1983) 357.

[14] H.-C. Lin, Dissipation additions to flux-difference splitting, J. Comput. Phys. 117 (1995) 20.

[15] W.K. Anderson, J.L. Thomas, B. van Leer, Comparison of finite volume flux vector splittings for the Euler equations, AIAA J. 24

(1986) 1453.

[16] R. Donat, A. Marquina, Capturing shock reflections: an improved flux formula, J. Comput. Phys. 125 (1996) 42.

[17] B. van Leer, Flux-vector splitting for the Euler equations, in: Lecture Notes in Physics, vol. 170, Springer, Berlin, 1982, p. 507.

[18] K.M. Peery, S.T. Imlay, Blunt-body flow simulations, in: AIAA/SAE/ASME/ASEE 24th Joint Propulsion Conference (AIAA

paper 88-2904), 1988.

[19] D. Gaitonde, J.S. Shang, Accuracy of flux-split algorithms in high-speed viscous flows, AIAA J. 31 (1993) 1215.

[20] T.H. Pulliam, D.S. Chaussee, A diagonal form of an implicit approximate factorization algorithm, J. Comput. Phys. 39 (1981)

347.

[21] T.J. Coakley, Implicit upwind methods for the compressible Navier–Stokes equations, AIAA J. 23 (1984) 374.

[22] J. Fay, F. Riddell, Theory of stagnation point heat transfer rate in dissociated air, J. Aeronaut. Sci. 25 (1953) 73.

542 S.H. Park, J.H. Kwon / Journal of Computational Physics 188 (2003) 524–542


	On the dissipation mechanism of Godunov-type schemes
	Introduction
	Unified Godunov-type schemes
	Analysis on numerical dissipation mechanism
	Numerical dissipation at contact discontinuity
	Signal speeds in expanding region
	Shock instability

	HLLE+ scheme
	Concluding remarks
	References


